Compiling Distributed System Models with PGo

Finn Hackett
University of British Columbia
Canada

Matthew Do
University of British Columbia
Canada

ABSTRACT

Distributed systems are difficult to design and implement correctly.
In response, both research and industry are exploring applications
of formal methods to distributed systems. A key challenge in this
domain is the missing link between the formal design of a sys-
tem and its implementation. Today, practitioners bridge this link
through manual effort.

We present a language called Modular PlusCal (MPCal) that
extends PlusCal by cleanly separating the model of a system from
a model of its environment. We then present a compiler tool-chain
called PGo that automatically translates MPCal models to TLA* for
model checking, and that also compiles MPCal models to runnable
Go code. PGo provides system designers with a new ability to model
and check their designs, and then re-use their modeling efforts to
mechanically extract runnable implementations of their designs.

Our evaluation shows that the PGo approach works for complex
models: we model check, compile, and evaluate the performance of
MPCal systems based on Raft, CRDTs, and primary-backup. Com-
pared to previous work, PGo requires less time to develop a checked
model and derive a fully working implementation. With PGo we
created a formally checked Raft model and its corresponding imple-
mentation in under 1 person-month, which is 3x less time than Ivy.
Our evaluation shows that a PGo-based Raft KV store with three
nodes has 41% higher throughput than a Raft KV store based on Ivy,
the highest performing verified Raft-based KV store from related
work. A PGo-based CRDT set has a latency within 2x of a CRDT
set implementation from SoundCloud called Roshi.

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion; Compilers; System modeling languages; - Computing
methodologies — Distributed computing methodologies.

KEYWORDS
Formal methods, Distributed systems, Compilers, PlusCal, TLA*

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03...$15.00
https://doi.org/10.1145/3575693.3575695

Shayan Hosseini
University of British Columbia
Canada

159

Renato Costa
University of British Columbia
Canada

Ivan Beschastnikh
University of British Columbia
Canada

ACM Reference Format:

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. 2023. Compiling Distributed System Models with PGo. In Proceedings
of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2 (ASPLOS °23), March
25-29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3575693.3575695

1 INTRODUCTION

Distributed systems remain challenging to design and to build. As
a result, systems in production often contain bugs that degrade
performance [26], cause service outage [28, 77] and even data
loss [27]. Many tools have been developed to aid developers in
building more correct distributed systems. Some tools help devel-
opers during design to verify that their logic is correct, before they
write code [47, 79]. Others, such as tracing [41, 61], runtime check-
ing [53, 54], and debugging frameworks [4, 5, 29, 48, 74, 82, 86],
help explain and check runtime behavior. However, there remains
a gap between models of system design and runnable code. In par-
ticular, at present, there is no easy-to-use way to translate a verified
distributed system design into an implementation.

Systems such as Verdi [79] and IronFleet [37] have codified this
translation into formal frameworks that help users prove the trans-
lation with theorem provers such as Coq and Dafny. This is a major
success, but these frameworks require substantial effort and are too
complex to be used by non-researchers.

One implication of the gap between models and implementations
is that formal methods developed for models of distributed systems
are limited in their impact. Another implication is that the systems
community has focused on applying model checking to distributed
system implementations [49, 58, 83]. Although this line of work has
yielded impressive results, it is fundamentally handicapped due to
the state explosion inherent to implementations.

Our goal is to translate verified distributed system models into
implementations that exhibit some refinement of the modeled be-
havior. For this, we designed a source language called Modular
PlusCal (MPCal) that is a strict superset of PlusCal [47]. To our
knowledge, MPCal is the first PlusCal extension that makes it possi-
ble to derive runnable code from PlusCal models. This automation
avoids the practical overhead and potential for human error in first
modeling a system and then separately writing an implementation.
Additionally, building a DSL on top of PlusCal with support for
multithreading and non-determinism as primitives allows us to
implement these more intelligently.

To translate a formal MPCal model into Go, we designed and
implemented a new compiler called PGo (Figure 1). The key to
PGo’s translation is MPCal’s separation between the description

https://doi.org/10.1145/3575693.3575695
https://doi.org/10.1145/3575693.3575695
https://www.acm.org/publications/policies/artifact-review-and-badging-current

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Abstract model Concrete realization
Modular Compiled | | distsys
PlusCal Go libraries

/
\ /

Main
(program setup)

Go runtime

PlusCal

Distributed deployment

Correctness
Properties
=)
Model Checker (TLC) ,vv\
+ + e AT
I S o]

v %

Figure 1: PGo workflow. The shaded blue components must
be provided by the user.

of a system and its environment, with the ability to fully hide
verification-level details. MPCal introduces three new abstractions:
(1) archetypes contain only the system definition, (2) mapping macros
encapsulate environment behavior, and (3) resources describe a sys-
tem’s environment dependencies. Due to the environment details
being omitted during compilation, PGo also provides a Go library,
PGo-distsys, which offers runtime replacements for a variety of
common MPCal environment abstractions.
In summary, this paper makes the following contributions:

* We introduce MPCal, a language to bridge a system model with its
implementation. Building on PlusCal, which has little support for
abstraction or information hiding, MPCal explicitly distinguishes
the system from its environment with three new abstractions: (1)
archetypes, (2) mapping macros, and (3) resources (§3).

* We present the design of PGo, a compiler from MPCal to runnable
code. We show how to map PlusCal’s support for non-determinism
and TLA"’s set-theory-first untyped semantics to the practical
Go-based implementations generated by PGo (§4).

* We show that PGo makes it easier to build verified distributed
systems, providing at least 3X reduction in development time for
Raft as compared to Ivy [24]. PGo-based systems also have good
performance. For example, on a YCSB benchmark, a PGo-based
Raft KV store with three nodes has 41% higher throughput and
42% lower latency than a Raft KV store based on Ivy. Compared
to etcd, which is a production grade Raft-based KV, our system
has the same latency and 21% of etcd’s throughput (§7).

2 ASSUMPTIONS AND BACKGROUND

We now review the assumptions of our work, as well as the back-
ground on model checking, TLA*, and PlusCal.

2.1 Trusted Computing Base Assumptions

Model correctness. A developer writes a model of their system
in MPCal. The overall model-focused process is shown on the left

160

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

of Figure 1. The developer trusts that the MPCal—PlusCal com-
pilation provided by PGo is correct, and that the PlusCal > TLA*
translation provided by the TLC toolbox is correct. Next, the user
trusts the model checker (TLC) or the TLA* proof system (TLAPS).
TLC further requires the developer to judiciously constrain the
model’s state space (which is usually unbounded), while TLAPS
helps with the writing of machine-checked proofs. Note that when
combining separately-checked components (discussed in §4.3), the
combination is unverified, and the developer has to also trust that
the components are compatible and combined correctly.
Implementation correctness. Once the model is complete, the de-
veloper uses PGo to compile the model into Go. This implementation-
focused process is shown on the right side of Figure 1. The developer
must trust that the MPCal—Go compilation with PGo is correct,
i.e., the PGo-generated Go code conforms to the TLA* spec that
was checked with TLC.

As well, the developer must trust any hand-written glue Go code
that they write to bootstrap the system, and all PGo’s distsys li-
braries that are hand-written in Go. The developer must also trust
the Go runtime and the underlying systems software stack when
deploying their system. When considering liveness properties in an
implementation context, the developer must additionally consider
factors such as the Go runtime scheduler and network delivery guar-
antees. For example, schedulers are usually not fair in the TLA*
sense, so care must be taken regarding liveness assumptions in
MPCal. When using relaxed resources (§4.2.1), developers must ad-
ditionally trust that the performance optimizations do not introduce
behaviors that are not allowed by the MPCal specification.

2.2 Background

We now review the ideas that our work builds on and use a simple
lock service as a running example. In this system, there is a central
lock server that manages a lock. There are several clients that
request to acquire/release the lock.

Model checking determines if a model of a system satisfies a
certain specification. A model checker exhaustively explores the
system’s state space to determine if the specification is satisfied in
every possible model execution. If an execution is found to violate
a property, the model checker outputs a counterexample trace that
explains how the system reached an invalid state.

Correctness specifications are written as system properties. It
is common to divide these into two categories: safety and liveness
properties [2, 44]. Safety asserts that bad states are not reachable
from the initial state; liveness properties express that the system
must eventually do something good. For example, the mutual ex-
clusion safety property for the lock service is that no two clients
can hold the lock at the same time. In this property, ClientSet is
the set of all clients in the system, and state; is i-th client’s state:
Ai, j € ClientSet : i # j A state; = HasLock A statej = HasLock
TLA™ [46] is a declarative language for modeling systems based
on TLA [45], a variant of Pnueli’s Temporal Logic [70], which uses
first-order logic and set theory. A TLA* model can be checked
against safety and liveness properties with the TLC model checker.

A TLA* model consists of several predicates that define the
system’s initial state as well as the transition relation that describes

Compiling Distributed System Models with PGo

variables network = [id \in NodeSet |-> <<>>];

1
2
3 * fair keyword specifies assumption of fair scheduling
4 fair process (Server = 1)

5 variables msg, q = <<>>;

¢ {

7 serverLoop:

8 while (TRUE) {

9 serverReceive:

10 * await cond statement blocks the process until
11 * the cond becomes true

12 await Len(network[self]) > 0;

13 msg := Head(network[self]);

14 network[self] := Tail(network[self]);

15 serverRespond:

16 if (msg.type = LockMsg) {

17 * if q is empty

18 if (g = <<>>) {

19 network[msg.from] := Append(network[msg.from],
20 GrantMsg) ;

21 };

22 q := Append(q, msg.from);

23 } else {

2 q := Tail(q);

25 * if q is not empty (/= is the not equals operator)
26 if (q /= <<>>) {

27 network[Head(q)] := Append(network[Head(q)],
28 GrantMsg) ;

29 };

30 };

31 };

32 }

Listing 1: Lock server specification in PlusCal.

how the system can make progress. The transitions define atomic
steps in the system and a sequence of them form a system behavior.
PlusCal [47] is an algorithm description language that can be
compiled to TLA*. Using PlusCal, a user specifies a system in a
procedural style: different processes in a system have their behavior
defined by statements, and interact using familiar control flow
constructs such as if statements and while loops. Listing 1 shows
a PlusCal model of a lock server, our running example. Users can
compile PlusCal specs into TLA* using a PlusCal translator. This
allows them to use the TLC model checker on PlusCal specs.

A PlusCal spec consists of one or more processes. Each process
runs sequentially and processes can run concurrently. The user can
use synchronization mechanisms (such as await) and global vari-
ables. PlusCal requires the user to structure the processes around
labels (such as serverReceive and serverRespond in Listing 1). A
block of statements within a label is an atomic step in the model,
similar to the “atomic block” concept from concurrent programming
languages like Fortress [1] and Chapel [10]. The label notation is
particular to PlusCal, combining atomicity with the C-like ability to
name control flow targets that can be reached via goto. We also use
the term critical sections to refer to labels. In compilation to TLA®,
each PlusCal label block is translated to a TLA* transition. Labels
present the designer with a trade-off: more labels allow for more
concurrency (as interleavings between labels in different processes),
which may be more realistic. But, this realism comes at the cost of
exponential growth of the state space.

3 MODULAR PLUSCAL

In this section we describe MPCal, a language that we designed to
make implementing tools like PGo possible for the PlusCal language

161

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

System model Environment

Archetype
definitions

read/write

Local state vars

Figure 2: Structure of a Modular PlusCal model.

read/write

Global state vars

family. MPCal adds to PlusCal a separation between the modeled
system and its environment, as well as mechanisms to bind system
and environment definitions together.
Why not compile PlusCal? PlusCal mixes details of the system
with the environment. This makes it impossible for PGo to detect
the parts that should compile to executable code, and the parts that
model environment semantics and should be ignored. For example,
Listing 1 mixes the semantics of a lock server with a model of a
buffered network connection.
Modular PlusCal (MPCal) overview. MPCal explicitly distin-
guishes the system and its environment (Figure 2). At the same
time, MPCal preserves PlusCal’s flexibility in capturing arbitrary
environment semantics. MPCal extends PlusCal with three com-
plementary implementation hiding primitives: (1) archetype defini-
tions, (2) archetype instantiations, and (3) mapping macros'.
Archetype definitions (left of Figure 2) are a template for pro-
cesses. Unlike PlusCal processes, archetypes must be separable
from the surrounding specification for compilation by PGo, so they
prevent access to the specification’s global state by default. An
archetype defines the system model and owns a set of local vari-
ables, which only one process (instantiated from the template) can
access. An archetype may take parameters called resources, which
describe the system’s environment dependencies. An archetype
definition provides all the information PGo needs to generate an
executable system, including dependency injection points for inter-
facing with its environment, such as communication mechanisms,
storage, liveness detectors, etc. Archetype are discussed in §3.1.
The right side of Figure 2 refers to the system’s environment.
The environment is made available to archetypes via resources that
act like state variables and have a narrow read/write API. How-
ever, resources are more flexible: while they can be used to access
global state variables as is idiomatic in PlusCal, their read/write
operations can be re-defined to arbitrary PlusCal code via mapping
macros. Mapping macros provide a way to inject different types of
environment semantics into archetype definitions. This allows PGo
to translate an MPCal specification into a set of model-checkable
PlusCal processes (e.g., Listing 1). Mapping macros also define the
interface between an archetype’s PGo-generated implementation
and its runtime environment. We discuss mapping macros in §3.2
and how to combine them with archetype definitions in §3.3.

10ur use of the term “macro” is a historic detail due to PlusCal, which uses them exten-
sively: mapping macros are better understood as a dependency injection mechanism,
which we explain in terms of plain TLA* (§3.2).

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1 archetype AServer(ref network[_])
2 variables msg, q = <<>>;
ER
4 serverLoop:
5 while (TRUE) {
6 serverReceive:
7 msg := network[self];
8 serverRespond:
9 if (msg.type = LockMsg) {
if(q = <<>») {
11 network [msg.from]
};
13 q := Append(q, msg.from);
} else if (msg.type = UnlockMsg) {
q := Tail(q);
if (q /= <<>») |
network[Head(q)] := GrantMsg;
18 };
3
};

:= GrantMsg;

21 ¥

mapping macro ReliableFIFOLink {
read {
await Len($variable) > 0;
with (readMsg = Head($variable)) {

27 $variable := Tail($variable);
28 yield readlMsg;

29 };

30 }

31 write {

yield Append($variable, $value);
34}
36 variables network = [id \in NodeSet |-> <<>>];

fair process (Server = 1) ==
instance AServer(ref network[_])
mapping network[_] via ReliableFIFOLink;

Listing 2: MPCal specification corresponding to Listing 1.

3.1 The Archetype Process Abstraction

To generate code from a specification, it must be clear which parts
of an MPCal specification PGo should compile. Archetype definitions
form self-contained descriptions of parts of a distributed system.
Their parameterization allows them to be meaningful both during
verification, and when compiled into Go code.

The archetype definition starting on line 1 of Listing 2 describes
a slice of the same process as in Listing 1, with all of the model
checking concerns abstracted away. Instances of network, which
is defined as the parameter ref network[_], replace the network
semantics mixed into Listing 1 with a handle to externally-defined
environment semantics. Accessing the value of network [addr] is a
network receive from addr, including all necessary buffer manipu-
lation. Similarly, assigning to network [addr] is a network send?.

3.2 Mapping macros

Mapping macros provide verification-specific, abstract details of a
specification’s environment, acting as oracles of the environment’s
true set of possible behaviors. These can be arbitrary PlusCal code,
and their compilation is best explained as conversion to TLA* oper-
ators. Mapping macros inject code into the read/write operations on
an MPCal resource, so the two operations they expose are read and

2The [_] syntax in ref network[_] restricts references to network by requiring
that these always indexed.

162

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

1 ReliableFIFOLink_read($variable, yield(_)) ==
2 /\ Len($variable) > 0

3 /\ LET readMsg = Head($variable)

4 IN /\ $variable' = Tail($variable)

5 /\ yield(readMsg)
6
7
8

ReliableFIFOLink_write($variable, $value) ==
/\ $variable' = Append($variable, $value)

Listing 3: TLA* description of the mapping macro definition
on line 23 of Listing 2.

1 serverReceive ==

2 ReliableFIFOLink_read(network[self],
3 LAMBDA readlsg :

4 /\ msg' = readMsg)

Listing 4: TLA" description of the label serverReceive on line
6 of Listing 2.

write and these take two implicit parameters each. The read takes
as parameters $variable, the underlying state variable to operate
on, and yield(_), a continuation into which to pass a computed
value. The write operation takes parameters $variable, again the
underlying state variable to operate on, and $value, the value being
written by the caller (an archetype), which the write may transform
prior to writing it to the underlying state variable using the yield
statement.

For example, Listing 3 gives a description in TLA* of the map-
ping macro on line 23 of Listing 2, a definition of reliable FIFO
network semantics. Some liberties taken for the sake of presen-
tation aside, these two translated operators can be called from a
compiled MPCal archetype during reads and writes to a resource,
injecting custom behavior in each case. The read operation restricts
evaluation to a situation where the underlying $variable, assumed
to be a TLA* sequence, is non-empty. If that condition is satisfied,
it uses TLA* sequence manipulation primitives to pop the first
element from the underlying state variable and pass the resulting
value to the parameter yield. Intentionally named the same as the
MPCal keyword here to highlight the equivalence, calling the yield
parameter should invoke the rest of the enclosing critical section
which depends on the yielded value, passing control back to the
TLA* code that originally invoked the read operation. The write
operation has no output, and treats yield differently: it takes a
$value to write, and uses the TLA* Append operation to push the
provided value onto the end of the underlying state variable, which
is still expected to be a TLA* sequence. The yield statement in this
case translates to just a state variable assignment.

For context, Listing 4 illustrates how the label defined on line 6
of Listing 2 might be translated into TLA*. The label is translated
into a TLA™ operator, and the access to network[self] is wrapped
in a call to the previously-defined ReliableFIFOLink_read. The
assignment to msg is passed to the read operation as a continuation,
to which the read operation will pass its computed value.

Mapping macros allow environment details to be provided on
archetype instantiation, with minimal restriction on how they are
specified or what they might do. Once an MPCal archetype instan-
tiation is expanded into a PlusCal process definition, the result is
functionally equivalent to hand-written PlusCal (i.e., the MPCal in
Listing 2 behaves equivalently to the PlusCal in Listing 1).

Compiling Distributed System Models with PGo

3.3 Instantiating an Archetype Process

An archetype instantiation refers to an existing archetype definition,
parameterizing it with the verification-specific information that it
lacks. The result can be compiled into a PlusCal process that can
be presented to TLC for model checking.

For example, the instantiation in line 39 of Listing 2 supplies
the network global variable, defined on line 36, as the AServer
archetype’s ref network[_] parameter. That is, in the resulting
process, all references to network will refer to the global variable
of the same name. The additional clause mapping network[_] via
ReliableFIFOLink indicates that the mapping macro ReliableFIFO-
Link should be applied to those same references to network, rewrit-
ing the archetype code to insert the same network semantics as in
Listing 1. The [_] syntax indicates that we want to map indexed
accesses to network. This means that indexing into network should
provide access to any one of a collection of mailboxes, whose indi-
vidual semantics are piecewise defined by ReliableFIFOLink.

3.4 Compiling MPCal with PGo

PGo (Figure 1) is a source-to-source compiler with two distinct tar-
gets: it compiles MPCal code to PlusCal, and also compiles the same
MPCal code to Go. PGo includes three key features, which combine
to integrate MPCal with both Go and PlusCal: (1) compilation from
MPCal to both Go and PlusCal; (2) a Go-language representation
of arbitrary TLA* data, supporting the vast majority” of constructs
usable with the TLC model checker; and (3) a hand-written Go
framework, PGo-distsys, which provides a main application loop
required by MPCal algorithms, as well as state management, opera-
tion scheduling, and multiple modes of environment interaction.

4 GENERATING GO CODE FROM MPCAL

In order to produce a runnable implementation from MPCal, PGo
generates Go code that implements a combination of TLA*, PlusCal,
and special MPCal semantics. We show how we deal with the unique
challenges presented by the required concurrency semantics, the
need for executing non-deterministic code, and TLA™’s set-theoretic
data and expressions.

PGo and its libraries are part of the trusted computing base of the
output system. It is important to minimize this trusted computing
base. PGo’s Go code generation is therefore minimalistic by design.
PGo generates largely unoptimized code and leaves many static
configurations like component linking until runtime rather than
pre-compiling them. This is not a fundamental design decision.

In exchange for simplicity as a compiler, the execution of an MP-
Cal archetype relies on a separate distsys Go library with which the
PGo-generated code interfaces. A significant part of the complexity
lies in MPCal’s critical section semantics (§4.2), which are provided
by distsys as part of a complete application loop. As a result, PGo’s
generated code is a collection of individual implementations of all
the labels in an MPCal model, alongside some metadata, around
which the distsys main loop will provide the necessary critical sec-
tion and inter-label control flow semantics. What PGo ultimately
avoids is protocol bugs, rather than lower-level bugs in I/O im-
plementation code, so we consider it secondary that compilation,
distsys, and configuration be verified.

3All finitely representable data of built-in types is supported.

163

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

MPCalCriticalSection{

"AServer.serverReceive",

Body: func(iface distsys.Archetypelnterface) error {
var err error // setup

1 distsys.
2
3
4
5 = err
6
7
8
9

Name:

msg := iface.RequireArchetypeResource(
"AServer.msg")
network, err := iface.RequireArchetypeResourceRef (
"AServer.network")
if err != nil {
return err
} // read network[self]
networkRead, err iface.Read(network,
[1tla.Value{iface.Self(0})
if err != nil {
return err
} // msg := <value>
err iface.Write(msg, nil, networkRead)
if err != nil {
return err
}
return iface.Goto("AServer.serverRespond")
},
},

Listing 5: The serverReceive label from the archetype defini-
tion in Listing 2 compiled to Go.

4.1 MPCal Statements and TLA* Values

Listing 5 lists the compiled Go output for the serverReceive
label in Listing 2. This is an almost direct translation of the original
MPCal code.

Resources are managed at runtime by distsys, and can be accessed

via the critical section’s single parameter, iface. Lines 6-9 acquire
handles to the resource-local variable msg and the archetype param-
eter ref network[_]. These handles can then be manipulated using
methods provided by iface. At line 13, iface.Read corresponds to
the indexed read from the network resource at line 7 of MPCal List-
ing 2. At line 17, iface.Write corresponds to the write to the local
variable msg on that same line of the MPCal. At line 21, iface.Goto
corresponds to the implicit jump to the immediately following crit-
ical section on line 8 of Listing 2, which is made explicit during
compilation.
TLA" values. As with statements, TLA* values and their opera-
tions are almost entirely implemented using library code. Expres-
sions are mapped to Go function calls, with, for example, a sim-
ple TLA™ expression such as 2 + 3 compiling to tla.PlusSymbol(
tla.MakeNumber (2), tla.MakeNumber(3)).

Insofar as is supported by other tooling (such as TLC), TLA*
values include the following data types: booleans, 32-bit integers,
strings, sets, heterogeneous sequences, key-value mappings (“func-
tions" and “records").

TLA* only allows immutable data and state transitions between
immutable system snapshots. We implemented atomic values such
as booleans, integers, and strings with wrapped Go native types. For
compound values, naively using common mutability-optimized data
structures in an immutable context will lead to copying whenever a
value needs updating, which can cause performance bugs. Instead,
PGo represents compound TLA* values using Hash-Array Mapped
Tries [3, 40], which supports O(1) updates via structural sharing,
ensuring more predictable performance for compiled TLA* output.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1 type ArchetypeResource interface {
2 Abort ()

3 PreCommit () error

4 Commit ()

5 ReadValue() (tla.Value, error)

6 WriteValue(value tla.Value) error
7

}

Listing 6: Go archetype resource interface definition.

4.2 MPCal Concurrency Semantics

A PGo-generated system must refine MPCal’s model-level concur-
rency semantics, which are identical to PlusCal. For this refine-
ment, PGo’s generated code must support more coarse-grained
representations of environment actions. In contrast, previous ap-
proaches [37, 69, 79] are single-threaded and based on fine-grained
instantaneous environment interactions. PGo needs to provide en-
vironment interaction mechanisms that are expressive and flexible.
These mechanisms need to be capable of representing any environ-
ment interaction, which means PGo’s generated implementation
must be able to interact with more abstract, coarser-grained envi-
ronment definitions. Flexibility is also required to allow developers
to use specialized high performance implementation techniques if
needed.

The execution of a single MPCal process is a sequence of critical
sections. An execution of several processes interleaves the critical
sections across processes in an arbitrary way to form a total order.
Within this total order, each critical section executes atomically,
requiring that only system state before or after execution of a
critical section is observed.

These semantics entail the following properties: (1) the successful
execution of any MPCal critical section must be serializable relative
to other critical sections; (2) if a critical section cannot complete, a
correct runtime implementation must ensure no partial execution
is observed and roll back any changes.

4.2.1 Coordinating Resource Implementations. For resources that
are local to an MPCal process, there is no need to deal with con-
current accesses. It is therefore reasonable to store a cached copy
of local state before the current critical section and roll back to
it if needed. In general, however, MPCal resources provide access
to arbitrary non-local data, either on different threads or different
machines, and can follow any semantics (message passing, arbitrary
shared state, etc). Maintaining concurrency semantics with shared
resources requires coordination.

To coordinate an MPCal process’s interaction with its resources,
distsys provides a main loop which manages the execution of a
single MPCal process. While following the process’s local sequence
of critical sections, the main loop uses a collection of abstract oper-
ations to implement atomicity and non-determinism. PGo explicitly
supports both optimistic and pessimistic concurrency, as well as the
deferred evaluation of side-effects. This need for flexibility prevents
more straightforward techniques like systematic locking of shared
resources.

Listing 6 lists the interface that Go-based distsys resources must
satisfy. ReadValue and WriteValue represent the input and output
interactions with the critical section’s environment. We discussed
these alongside Listing 5, so we focus on the remaining three meth-
ods.

164

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

1 archetype AServer(ref network[_], ref q)
2 variables msg;

3 * UNCHANGED from line 3 to line 34

35 variables

36 network = [id \in NodeSet |-> <<>>];
37 q = <<>>;

fair process (Server \in {1, 2, 3}) ==
instance AServer(ref network[_], ref q)
mapping network[_] via ReliableFIFOLink;

40

41
Listing 7: Changes to Listing 2 to make the lock server dis-
tributed.

At the high level, our goal is to achieve consensus that the critical
section should commit among the set of resources involved in the
critical section. At the end of the critical section, the main loop
invokes PreCommit on each resource. If all resources successfully
pre-commit, then the main loop invokes Commit on each resource
and this makes visible their side-effects. If any resource is unable
to pre-commit, then we abort the critical section (invoke Abort on
all resources) and roll back any temporary state or side-effects.

Each resource implements the above calls based on their desired
semantics. In most cases, PreCommit and Commit do not have to be
implemented in full generality. For example, in a critical section
with a single TCP send, the send can be done during PreCommit. If
the send succeeds, then the critical section commits successfully. If
the send fails, no side-effects are visible, and the process local state
can be rolled back as the critical section aborts.

Note that if the model includes, for example, two sends in the
same critical section, then the resources will have to provide atomic
broadcast. It is only in the simple cases that a pass-through to TCP
might be acceptable. We do however expect to see significant use
of relaxation in practice. Powerful primitives like atomic broadcast
are avoided in practical applications due to performance issues,
meaning that even if the initial implementation of an MPCal speci-
fication uses strict implementations of its resources, over time it is
likely that performance tuning will motivate a transition to more
specialized resource implementations. We provide an explicit weak-
ening pathway so that developers can make their own tradeoffs
between performance and correctness guarantees without having
to give up their PGo-generated verified protocol code.

Note also that these relaxations can increase the trusted com-
puting base, since deviating from a complete implementation of
an MPCal resource definition moves the resulting system further
away from the source MPCal specification. In practice, however, we
have found that developer discipline and good practices allow for
these tradeoffs while still benefiting from protocol-level verification.
We leave automated methods of ensuring the correctness of these
relaxations as future work.

To deal with failures, we introduce failure detectors. These allow
the developer to introduce custom fault tolerance logic (see §4.4).

4.2.2 Practical Example: Replicating a Lock Server. The MPCal
model in Listing 2 describes a single lock server. We build on this
example and build a multi-coordinator lock service that uses shared
state among lock servers. For this, we define q as a shared resource
and instantiate multiple lock servers. The result is Listing 7, which
builds on a mostly-unchanged version of Listing 2.

Compiling Distributed System Models with PGo

Why is consensus among resources needed in this example?
Consider the label serverRespond in Listing 2, which now operates
on a shared queue q. This critical section modifies the shared queue
and sends a message through the network. Due to MPCal semantics,
these two operations must occur atomically.

Now consider serverReceive, which performs a single network
operation. Here, a resource implementing the full resource consen-
sus API might have unnecessary overhead: even network, which
conceptually represents a reliable network send/receive, would be
required by consensus to confirm that the message payload can
be safely received during pre-commit. This would introduce extra
latency. MPCal helps to reclaim the performance loss by weakening
resource semantics with extra domain knowledge. For example,
the serverReceive critical section contains exactly one resource
operation that might fail, and a relaxed resource implementation can
be used in this case. This implementation can stub the pre-commit
check as trivially succeeding, and instead try to robustly send mes-
sages, knowing that any failures do not require coordination.

4.3 Using Verified Code from MPCal

Many resource implementations that we provide are hand-written
in Go. But, such resources pose a risk as they add to a system’s
trusted computing base (TCB). To decrease the TCB and because
resources may encapsulate complex distributed protocols (e.g., dis-
tributed mailboxes, Raft), it is important to allow resource imple-
mentations to be verified as well.

In its current state, PGo is not able to combine different MPCal
specifications in a sound way: verification applies to one specifi-
cation at a time. But, it is possible to link MPCal specifications
manually. We explore this option as a proof of concept by using
distsys to link together generated code from independent MPCal
models.

We separately specified and model checked the Raft protocol [68]
and an abstract distributed key-value store. Then we compiled each
of these models and connected them in Go to derive a complete
Raft-based key-value store, which we call PGo-RaftKV-Mod. In this
case, we modeled each system’s interface with the other as a pair
of input-output channels, and, for each system, we specified an
abstraction of the other system’s allowable behaviors for model
checking purposes®.

This technique makes specifications smaller and easier to reason
about. It also reduces the state space of each component model,
which makes it possible to scale MPCal models beyond the conven-
tionally viable limits of model-checked systems. In exchange, it is
up to the user to ensure that the contract between the two systems
remains valid. We consider this problem a target for further tooling
automation, and leave the topic for future investigation.

In §7.4 we compare the runtime performance of this modular
key-value store with several others, including a monolithic MPCal
Raft key-value store specification.

4.4 Fault Tolerance
Here we describe how we can build fault tolerant distributed sys-

tems using PGo. Fault tolerance is dependent on the system model

4Models are not required to communicate via channels; they may communicate in any
way that can be specified, including synchronously.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1 mapping macro FaultyLink {

2 read {

3 * same as the reliable FIF0 link
4 }

5 write {

6 either {

7 yield Append($variable, $value);
8 } or {

9 yield $variable; |* silently drop message
10 };

11 X

12 }
Listing 8: Modeling a faulty network link in MPCal.

1 *¥ ... end of a critical section that might fail
2 either {
3 await ExploreFail;
4 goto fail;
5 Yor{
6 skip;
7}
Listing 9: Modeling process failure in MPCal.
1 either {
2 network[id] := msg; |* some communication
3 }or {
4 await fd[idl; |#* only run 4if failure detector reports <id>
5 * has failed
6 * handle failure...
7}

Listing 10: Handling failures with a failure detector.

and failure model. We currently support an asynchronous comput-
ing model in which nodes might fail with crash failure semantics [9]
and/or network partitions might happen. We leave other models
to future work. For practical usage, see the prototypes we eval-
uate in §7. We used these fault tolerance techniques to build the
implementations discussed there.

Modeling failure behavior. Network faults in PGo can be ex-
pressed using a mapping macro with weak guarantees. For example,
Listing 8 describes a faulty network link. When we send a message
through this link, it might or might not deliver the message. We ex-
press this non-deterministic behavior using the either statement.

Listing 9 describes an idiom for crash failures. Placed at the end
of a critical section that might fail, this block ensures that either
nothing happens, or the process jumps to an unreachable failure
state. During model checking, ExploreFail may be set to TRUE to
enable non-deterministic failure exploration.

At runtime, since failure would occur as a consequence of the

environment, ExploreFail is set to FALSE. We also have to make
sure that a failed process will not receive any network messages;
we do that by adding a toggle to network links. This node failure
strategy leaves the developer with full control of where they do or
do not want to model failure.
Handling failures with failure detectors. Producing a model
of failure handling from which PGo can generate a reasonable im-
plementation can be subtle. For example, an either statement can
be used to explore failures with model checking, but this expresses
what could happen. This type of pattern would allow an implemen-
tation to spontaneously handle a failure, regardless of whether any
failure was detected.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 1: PGo-distsys components

Runtime Component | SLOC
Core MPCal Support | 783
TLA* Data Model | 1,103
Resource Utilities | 523
Sub-total | 2,409
Go Channel Resources | 135
Failure Detector Resource | 314
Proof-of-concept Filesystem Resource | 78
Reliable FIFO Mailbox Resources | 682
CRDT Resources | 710
Distributed Shared State Resource | 886
Total | 5,214

The desired behavior in an implementation is that we try the net-
work send first and in case of timeout we execute failure handling
code. However, MPCal has no notion of time. Our solution is to use
failure detectors to abstract time and prune unwanted executions.
Listing 10 shows how this idiom is applied. Given an appropriate
implementation of £d, the failure handling branch can only be taken
when the £d resource reports the remote process as having failed.
If £d[id] yields FALSE, then that branch will be rolled back and
the other one can be attempted. This design allows the inclusion
of practical failure checks at runtime and allows verification to be
parameterized by failure detectors. Balancing concerns of model
checking complexity and correctness, failure detection can be de-
fined as anything from a random boolean, to a theoretically perfect
process failure detector [13].

5 GENERATING PLUSCAL FROM MPCAL

A major portion of PGo’s PlusCal generation has already been
described in §3. Due to lack of space we only briefly touch on it
here. PlusCal output has a one-to-one correspondence to input
MPCal, except where MPCal-only directives are expanded. Two key
transformations are PGo’s basic-block decomposition of MPCal,
which is also used when generating Go, and PGo’s rewrite-based
implementation of variable reassignment in PlusCal.

Basic-block decomposition. This technique simplifies PGo’s
syntactic transformation design. PGo operates on a transformed
version of the input MPCal called the basic-block transformation.
Almost all the code within critical sections is preserved, except
that implicit control flow is made explicit via synthesized jump
statements. This removes the need for PGo to reason about the
contextual relationships between critical sections.

Reassignment in PlusCal. In PlusCal, within the same critical
section, the same state variable may be assigned at most once.
Since MPCal’s abstractions can hide assignments, we removed this
limitation from MPCal and PGo automatically applies the necessary
rewrites to ensure that its output is valid PlusCal.

6 IMPLEMENTATION

PGo is an open source project [32]. The PGo compiler is imple-
mented in 6,170 SLOC of Scala 2.13, and PGo-distsys is implemented
in Go 1.18 (Table 1). The PGo compiler is implemented using stan-
dard functional techniques applied to an immutable AST. Much of
the compiler pipeline is composed of AST term-rewriting passes

166

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

inspired by Viper’s model [62].0ur TLA™ parser is implemented
using Scala’s parser combinator library. This parser supports all of
TLA" version 1, alongside a pragmatic subset of TLA* 2.

PGo-distsys implements the runtime code needed by PGo-
generated code. The core MPCal support defines the abstract im-
plementations of the resource interface and the main loop algo-
rithm from §4.2, as well as the necessary accessor and management
methods. The TLA* data model implements everything to do with
manipulating TLA* values. Most of PGo’s generated expression
code are calls to functions implemented by this module. The rest
of the code contains resource implementations, which compiled
archetypes use for input/output.

7 EVALUATION

In our evaluation we aim to answer three questions: (1) What is the
development effort of constructing MPCal specifications? (2) How
does the performance of PGo-based systems compare against other
verified and manually written systems? (3) What is the performance
overhead of using verified code from MPCal?

7.1 Evaluated Systems and Methodology

Table 2 lists the seven systems we have constructed using MP-
Cal®. We built Raft-based systems by following a draft of the orig-
inal TLA* spec [67]. PGo-RaftKV is a monolithic Raft KV store
specification. Part of its specification is available in Appendix A.
Distributed-KV is an abstract key-value store with no consensus
component. PGo-RaftKV-Mod is a modular composition of the
pure Raft protocol specification and Distributed KV as described
in §4.3. PGo-PBKYV is a primary-backup key-value store where the
primary synchronously replicates KV requests to backup nodes.
PGo-CRDT is an add-wins observed removed set (AWORSet) state-
based CRDT [6] that uses vector clocks for merging and conflict
resolution.

We evaluate the performance of several systems from Table 2
in Sections 7.4 to 7.6. We ran our experiments on Azure with each
system deployed across a set of Ubuntu 20.04 Standard_B8ms VMs,
using default Azure Cloud routing. We made a best effort to fully
re-initialize server state between measurements, and repeated each
of our benchmarking scenarios 5 times for reliability. Each scenario
consisted of tens of thousands of operations, and ran for 10 minutes
on average. We also inspected network interface metrics to ensure
that we were not saturating any network connections. We report
medians of the trials, and use whiskers on bar graphs to show the
10th and 90th percentiles.

7.2 Development Effort

All MPCal specifications were written by the first two authors (two
Computer Science graduate students in their 1st and 2nd year).
Table 2 lists their effort in person days. The most complex system
we have developed is Raft and a KV store based on Raft. Table 2 also
lists the number of archetypes and SLOC in each MPCal spec, and
SLOC for the Go code we hand-wrote to bootstrap the generated
Go implementation of each system.

5The MPCal along with the compiled PlusCal, TLA*, and compiled and glue Go code
for these systems are in our GitHub repository [33].

Compiling Distributed System Models with PGo

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 2: Systems we developed using PGo. Our evaluation focuses on the bolded systems: (1) PGo-RaftKV-Mod, which is a modular
composition of Raft protocol and Distributed KV (see §4.3), (2) monolithic PGo-RaftKYV, (3) PGo-PBKYV, and (4) PGo-CRDT.

System Effort Properties model checked Checked Checking Archetype MPCal Glue Go

(person days) # states time (m) Count SLOC SLOC
Raft protocol 22 Five Raft properties [68] 2.7 x 10° 312 9 771 676
Distributed KV 3 Client interaction, consistency 2.6 X 107 4 3 256 383
PGo-RaftKV-Mod 25 - - - - - 1059
PGo-RaftKVv 25 Client interaction plus Raft ~ 3.1 x 107 404 7 758 1099
Lock service 2 Mutual exclusion and liveness 4.6 x 107 73 2 67 87
PGo-PBKV 10 Strong consistency 4.5 X 107 235 4 420 270
PGo-CRDT 10 Convergence and termination 5.8 X 10° 3954 2 160 185

Table 2 shows that building PGo-RaftKV required less than one
person-month of effort, while building the similar system in Ivy [24]
needed 3 person-months, Verdi [79] took 12 person-months, and
IronFleet [37] required 18 person-months. We find our results
encouraging. However, we note that all of these numbers, includ-
ing ours, are anecdotal and self-reported. They are also based on
researchers who are not representative of the average software
developer. Future work should explore user studies to evaluate the
usability of tools in this space.

While building these systems we found ourselves reusing map-
ping macros across systems that have identical or similar assump-
tions about failures or the environment. We have also developed
and re-used several implementations of common resources like the
network and the file system.

7.3

Table 2 lists the properties we specified and checked, the states
that the TLC checker explored, and TLC checking time. We ran
our experiments on a machine with 64 CPU cores and 128GB of
RAM. TLC is an exhaustive model checker: it will cover the entire
reachable state space it is given and then terminate. This provides
stronger guarantees than heuristically sampling the state space.
This also means that TLC is a bounded model checker: it must be
given a finite state space to explore. We therefore needed to restrict
each system’s state space. For example, for the Raft protocol and
PGo-RaftKV our model checking configuration assumed 3 servers,
one round of election, and at most two entries committed to the
log with at most one node failure. More powerful machines would
allow for looser bounds and more checked states in Table 2.

While effective at finding bugs, our use of model checking pro-
vides weaker guarantees than theorem provers, which are popular
in related work. Theorem provers allow verification to consider
infinite state spaces using symbolic techniques, and do not require
bounding a model’s state space. In exchange, theorem provers re-
quire more guidance during verification than model checkers. This
guidance, however, becomes additional information that must be
updated alongside the specification if changes are made. In compar-
ison, model checking adapts more easily to changing specifications
as it requires less information to begin with. For example, when
we refactored PGo-RaftKV to add extra threads of execution as a
performance optimization, we were able to simply re-run TLC on
the new version.

We did not compare the overhead of model checking MPCal rel-
ative to PlusCal because we could not find working PlusCal/TLA*

Model Checking Performance

167

models for the systems we considered. However, we manually re-
viewed the PGo-generated PlusCal for all systems, and are confident
that the checking overhead is minimal.

7.4 Performance of Raft-based KV Stores

PGo-RaftKV uses TCP and BadgerDB [57, 72], an embedded KV
store for durable store. We also evaluate PGo-RaftKV-Mod, our
proof of concept for modular verification, with the goal of measur-
ing the overhead of linking separately verified MPCal specifications.
We compare our Raft-based KV stores against several verified KV
stores: a KV store verified in Verdi [79], called Vard [80]; a KV store
verified in Dafny, called IronKV [37, 38]; and a KV store verified in
Ivy, that we call Ivy-Raft [24]. All these KV stores are Raft-based,
except IronKV, which is based on MultiPaxos. Each implementation
is extracted as OCaml, C#, and C++ respectively. All implementa-
tions interact with the underlying platform using custom shim code.
These shims communicate via plain TCP or UDP. IronKV supports
SSL, but its original evaluation did not use this, so we leave SSL
disabled. PGo-RaftKV and Vard implement disk-based durability,
whereas IronKV and Ivy-Raft do not. To see if this had an impact,
we re-ran a set of benchmarks with disk-based durability disabled
in our artifact, and did not notice a significant change in throughput.
We also present benchmark results for etcd v3.5.4 [22] as a baseline.
etcd is a widely used Raft-based KV store implemented in Go.

We attempted to additionally evaluate Coyote [18] and Sta-
teRight [63], as they appeared to have Raft and Paxos prototypes
respectively. But, we found that these prototypes were incompara-
ble with practical consensus implementations. Coyote’s Raft proto-
type was confirmed by the authors to be only intended as a model
checking target. Similarly, StateRight authors confirmed that their
Paxos prototype was single-degree: it could only agree on a single
value during an execution.

We evaluate these KV stores with the YCSB benchmark [16] and
measure throughput and latency. We consider five YCSB workloads:
(A) 50/50 read/update Zipfian, (B) 95/5 read/update Zipfian, (C)
read-only Zipfian, (D) 95/5 read/update latest (most recently in-
serted records are at the head of the Zipfian distribution), (F) 50/50
read/read-modify-write (causally linked read/write) Zipfian®.

To avoid re-implementing the YCSB codebase and workload
generators in a language compatible with the related KV stores’
original client libraries, we wrote custom Java clients to interact

®We omit YCSB workload E as our systems do not support scans.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

PGo-RaftkV

2000
Q
Q.
81500

Q.1000

YCSB Workload

Figure 3: Throughput of PGo as compared to various systems
for a selection of standard YCSB workloads.

PGo-RaftkV & PGo-RaftKV-Mod Ivy-Raft v IronKV etcd
[2]
1S
=200 v
>
2 vv
9] vy
«
BT A
c
_g +
©
b} 0 * * o r
s 102 10° 101
Throughput (op/s)

Figure 4: Latency-throughput data of Raft-based KV systems
with varying number of concurrent clients.

PGo-RaftkV Ivy-Raft ®®8 PGo-RaftkV-Mod HEE IronKV B8 Vard

v
&

5 7
Number of Nodes

Figure 5: Scalability of Raft-based KV systems with varying
cluster size.

with Vard, IronKV, and Ivy-Raft clusters’. As they use almost identi-
cal protocols, Vard and Ivy-Raft are able to use the same client code.
We did not need to do this for etcd, because etcd has a dedicated
Java client library. We worked closely with the authors of Ivy-Raft
to build and debug their artifact. We were ultimately not able to
extract working C++ code from their model using any version of the
Ivy tool, and our measurements of Ivy-Raft’s performance rely on
already-extracted C++ files from one of the Ivy author’s archives.
Two of the systems we evaluate use a variant of the YCSB work-
loads, using values that are only a few bytes long: both Vard and
Ivy-Raft’s implementations suffer from buffer overflow issues when
handling larger messages, impacting their availability. We tested the
other systems with this version of the YCSB workloads, and found
that this did not make a significant difference to our measurements.
Figure 3 shows the performance of PGo-RaftKV and PGo-RaftKV-
Mod, alongside related work KV stores, across YCSB workloads.

"We thank the authors of IronKV and Ivy-Raft for their assistance in working with
their artifacts and reverse-engineering their original client code. We make our client
code, YCSB drivers, and the Ivy-Raft C++ code available [35].

168

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

All systems used 3-node clusters. We repeated the benchmarks for
each workload while varying the number of concurrent clients,
until we reached peak possible throughput for each system and
workload, and recorded that peak number. PGo-RaftKV had the
highest throughput across all workloads. It outperformed Ivy-Raft
(the closest performing system) in overall mean throughput by 41%.
This shows that PGo’s architecture generates more flexible imple-
mentations than related work, allowing us to precisely optimize I/O
behavior and produce an efficient multi-threaded implementation.
Our optimizations include dividing the MPCal model into several
communicating processes, each dedicated to performing a single
task, allowing more concurrent processing than related work. The
multi-threading transformation required editing and recompiling
the model, which we also model checked to verify that it remained
correct. Additionally, we tuned timeout values and the delay be-
tween attempts at log synchronization between nodes to maximize
runtime performance. This was done on the Go side, as our model
does not reason about physical time.

We also observe that PGo-RaftKV-Mod has lower performance
than PGo-RaftKV, with a maximum throughput a little below that
of Ivy-Raft. This suggests that separating a system into two MPCal
models may incur some performance overhead. The difference
could also be due to us spending more time working on tuning
PGo-RaftKV’s implementation.

All systems, including PGo-RaftKV, substantially under-perform
the etcd baseline (not shown): etcd achieved peak throughput be-
tween 5,866 and 10,504 op/s across all workloads. We believe PGo-
RaftKV’s has lower throughput than etcd for two reasons. First,
etcd’s architecture allows much more concurrency in processing
clients’ requests compared to PGo-RaftKV. This is due to a design
difference between etcd and all the other Raft-based KV stores we
evaluated: etcd implements a threaded extension of Raft [66], which
allows greater concurrency than Raft’s core specification. While
PGo-RaftKV leverages more multi-threading than related work, it
is still based on the original Raft TLA* specification, and does not
deviate significantly from the core protocol specification. Second,
PGo-RaftKV uses inherently less efficient immutable data struc-
tures in its compiled TLA*. In exchange for asymptotically good
performance, these data structures are known to have significant
overheads compared to mutable variants. We leave addressing these
issues and moving our performance closer to a production-grade
tool, such as etcd, to future work.

We compare the relationship between latency and throughput for
the systems we benchmark in Figure 4. This comparison uses clus-
ters of size 3 running workload A, and plots the median throughput
and client latency curve across every number of clients used when
calculating maximum throughput for Figure 3. Note that Vard has
been omitted from the plot for readability: its maximum throughput
was 31 op/s and its minimum latency was 738ms. This comparison
shows that overall PGo-RaftKV has 42% lower median latency than
the lowest-latency related work, Ivy-Raft, and similar latency to
etcd. This lower latency is likely due to our ability to generate and
tune multi-threaded implementations, which are able to internally
buffer data and perform tasks concurrently where possible, rather
than strictly following the model’s higher-level totally-ordered
semantics. Note that introducing threading to verified systems,
like those based IronFleet, can require a fundamental re-design

Compiling Distributed System Models with PGo

?GOO Leader fails Follower fails
8- TITT NESERECARNER , -\,.,'\.'\.\.
— 400 i
_§- [New
g>2()() i , leader elected
o) Read Ops !
c —-= Update Ops
E 9 p P

0 10 20 30 10

Time (s)

Figure 6: Throughput of PGo-RaftKV over time with three
highlighted events: leader failure, new leader election, fol-
lower failure.

of the correctness properties and a re-writing of proofs. By con-
trast, PGo’s lighter-weight verification options allow for more agile
performance optimization of verified distributed systems.

Figure 5 considers the scalability of each system for varying
cluster sizes, using workload A. As with Figure 3, for each clus-
ter size and system we found the number of concurrent clients
that resulted in peak throughput. For consensus-based systems,
it is expected that peak throughput will decrease as cluster size
increases, because more coordination work is needed. This effect is
shown in Figure 5. Interestingly, at cluster size of 9, PGo-RaftKV
and Ivy-Raft do not have measurably different peak throughputs.
This could be due to a difference in the efficiency of PGo-RaftKV’s
consensus implementation as compared to Ivy-Raft. We believe
that PGo-RaftKV’s use of multiple threads per node confers less
of an advantage at high cluster sizes, and the relative efficiency of
Ivy-Raft’s C++ implementation might begin to have an effect.

Figure 6 shows PGo-RaftKV’s fault tolerance in action during
an execution of YCSB workload A with cluster size 5, plotting
throughput over time. The plot shows a leader failure at about 22s.
And after a timeout, the clients timeout and look for a new leader.
We later kill a follower at about 41s, which has a minimal effect.

7.5 Performance of Primary-Backup KV stores

PGo-PBKYV is a distributed key-value store based on the primary-
backup protocol. PGo-PBKV has a primary node that synchronously
replicates data to one or more backup nodes. We evaluated PGo-
PBKYV and compared it against Redis [73], a widely-used key-value
store written in C. Redis’ replication uses a primary-backup proto-
col, which we ran in synchronous replication mode to better match
PGo-PBKV’s behavior. We also tried to evaluate Verdi’s primary-
backup system, but we confirmed with the authors that they had
never written runtime glue code for it because it was only used
for proof purposes. We deployed both PGo-PBKV and Redis on
three machines, one primary and two backups, and used the YCSB
workload A to evaluate them. The peak throughput of PGo-PBKV
is 340 op/s, while Redis handled over 50,000 op/s. The poor per-
formance of PGo-PBKYV is due to a lack of protocol optimizations
and tuning. In particular, PGo-PBKV does not support batching for
replicating incoming requests, which requires a more complex set
of correctness properties and implementation semantics than we
had time to implement.

169

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

@8 PGo-CRDT E=2 Roshi

&

—_ S S (g/
2]
JEY
o ©
O 540 o5
€3 ?
[
§20
0 4 8 12

Number of Nodes

Figure 7: Convergence times for PGo-CRDT and Roshi.

7.6 Performance of CRDT-based Systems

We evaluated a state-based CRDT set, PGo-CRDT, and compare it
against an open source CRDT set from SoundCloud called Roshi [8].

To compare these systems, we measured how long it took for
all nodes’ states to converge to the same value (convergence time).
In our experiment, every node executes multiple rounds. In round
r, node n adds the pair (r, n) to the set and then waits until its set
has all pairs of form (r, i), for every node i. For each round, we
measured the time from when a node updates its local set until the
above condition is satisfied. We repeated this process for a total
of 100 rounds. Note that in both systems the updates are applied
locally, and then each node broadcasts its state every 50ms.

Figure 7 shows that Roshi has up to 2X better performance than
PGo-CRDT, although PGo-CRDT scales more consistently. While
smaller than the difference between PGo-RaftKV and etcd, this
difference is also likely due to Roshi having more person-hours ded-
icated to tuning and optimization, as well as potential inefficiencies
in the data structures used by PGo’s compiled output.

8 RELATED WORK

Model-checked DSLs. PGo and MPCal are similar to domain-
specific languages intended for developing model-checked dis-
tributed systems. P [17, 19] provides a verifiable state machine
model similar to MPCal, but with a lower-level C-like language
augmented with actor-like primitives. Mace [42, 43] offers a model
based on nested state machines, operating as a DSL integrated with
C++. Mace lacks MPCal’s abstraction capabilities. StateRight [63] is
a model checking-oriented DSL in Rust that represents distributed
systems expressed as state machines, making similar tradeoffs to
Mace. It offers exhaustive model checking options and benefits from
Rust’s strong low-level safety guarantees. Coyote [18] acts as an
implementation model checker for unmodified C# code, with an
optional actor-based DSL.

Automated theorem-proving. Verdi [79] and Adore [39] provide
libraries for Coq [78] and offer implementation extraction. Verdi
focuses on relaxing assumptions via refinement, and Adore reduces
proof effort using a protocol abstraction. EventML[71] targets Nuprl
instead of Coq and uses a logic based on causal order of events.
PSync [21] supports semi-automated verification and assumes a
round-based program structure. Disel [75] is a Coq DSL for writ-
ing and verifying imperative specifications using a Hoare-style
logic designed to allow easy composition of verified components.
Chapar [51] is another Coq DSL, specialized to the specification
and verification of key-value stores and their clients. IronFleet [37]

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

provides tools that allow developers to prove that realistic imple-
mentations refine a high-level specification in Dafny [50]. Ivy [69],
DuoAlI [84], DistAl [85], SWISS [36], and 14 [60] decrease the effort
to come up with inductive invariants for verification. Note that Ivy
the verifier and Ivy-Raft the KV store [24] are distinct works by
different authors. Sift [59] is a proof decomposition methodology
that relies on automated refinement. Armada [20] provides a C-like
specification language for verified concurrent programs

PGo differs from work in this category in that it does not specify
how verification must be done. Model checking of TLA* can provide
practically useful levels of confidence via state space exploration,
without requiring formal proofs [25, 65], though proofs of safety
properties for a TLA* model are possible via TLAPS [14]. Prior work
has observed that multiple techniques are necessary for practical
verification results [7], including model checking. Another key
difference (discussed in §4.3), PGo’s support for modular verification
is unsound: linkage of verified compoments is unchecked.

Note that presentation differences may hide the common TCB

between PGo and these projects. In practice, we found that all
systems similar to PGo must trust: the verifier, the code generator,
the OS, some configuration, and some scheduling and I/O code.
Maude. Maude [15] supports specifying, verifying, and generating
distributed system implementations [52]. Support is limited to state
machines communicating via message passing. To define environ-
ment behavior, Maude provides a sockets abstraction; it is not clear
how it can provide higher level abstractions as in MPCal.
Model-checking implementations. Previous work has applied
the idea of state-space exploration directly to system implementa-
tions [30, 49, 58, 64, 76, 83], as opposed to their abstractions. This
work is pragmatic and overcomes difficult specification issues [23].
But, this type of model checking is limited in scalability since sys-
tem implementations contain more concurrency and a larger state
space than system models.
Go systems tooling. Recent work has proposed tools to check and
fix Go concurrency issues [55, 56], as well as verify Go code [11, 12,
81]. This work is complementary to our own, since it can further
increase a user’s confidence in the Go output from PGo.

9 CONCLUSION

In this paper we bridge the gap between distributed system models
and their implementations via compilation (in contrast to formal
verification or program synthesis). We presented the design of the
MPCal language and the PGo compiler tool-chain to compile MP-
Cal models to TLA* for model checking, and to running Go code.
Our evaluation shows that PGo is capable of building complex
distributed systems, such as a Raft-based key-value store. The re-
sulting systems perform at least 40% better than verified systems
from related work and also take at least 3% less time to construct.

In our future work we hope to decrease the TCB of the PGo
tool-chain, by improving the modular verification workflow and
exploring compiler-assisted runtime verification.

Ultimately, we believe that a compiler will encourage developers
to specify their systems, since it will derive the majority of an
implementation for free. A compiler will also help researchers to
focus their efforts on more broadly applicable techniques.

170

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

DATA-AVAILABILITY STATEMENT

We make public a snapshot of our raw evaluation results and tool-
ing [31], and our compiler [34]. See Appendix B for more details.

ACKNOWLEDGMENTS

We thank Brandon Zhang, Yi Fan (Bob) Yang, Adam Geller, Ru-
chit Palrecha, Yennis Ye, Shizuko Akamoto, and Zack Grannan for
their contributions to PGo at different stages over the years. We
would also like to thank the anonymous referees of ASPLOS’23 and
OSDI'22 and our shepherd for invaluable suggestions. This research
is supported in part by the NSERC Discovery Grants (RGPIN-2020-
05203, RGPIN-2014-04870), by AWS through an Amazon Research
Award, by an Azure Education Grant, and by the Institute for Com-
puting, Information and Cognitive Systems (ICICS) at UBC.

A PGO-RAFTKYV SPECIFICATION APPENDIX

Legend:

<Archetype>

log
PersistentLog

T
Read

Shared
- state

resource
Mapping Macro

- commitlndex
- currentTerm
- votedFor

Read’

AServer AServerAdvance
AppendEntries CommitIndex FEemEHENET
H;Fd wme\A Wiﬁe
appendEntriesCh net
Channel ReliableFIFOLink
Y Y
Write Write
AServerBecome AServerRequest '\ _ leaderTimeout
ead—
Leader Vote Timer

(a) Architecture of MPCal Raft server

net

Z’C"””"g ReliableFIFOLink Received
eqflest \ Response

) Read A

* Wille |
reqCh L . respCh
Channel Foad=®> HelLia " Channel

(b) Architecture of MPCal Raft client

Figure 8: Partial architecture of PGo-RaftKV. Arrows show
the interaction between archetypes and mapping macros.
The direction of each read/write arrow denotes the direction
of data flow.

This appendix contains a selection of our PGo-RaftKV specifica-
tion. PGo-RaftKV consists of servers and clients. Figure 8 shows a
partial architecture of PGo-RaftKV, including some of its archetypes
and mapping macros. A server has several archetypes that run con-
currently. AServerHandler relays incoming messages to other com-
ponents. The remaining components are named after the aspects
of the Raft protocol to which they correspond.

The user-facing archetype AClient relays input requests from a
channel (reqCh) to instances of AServer via ReliableFIFOLink. It
passes relevant responses back to the user via the channel (respCh).

We include some of our MPCal definitions on the next page.

Compiling Distributed System Models with PGo

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1 mapping macro| PerfectFailureDetector|{ A perfect failure detector. Can 79 };

2 read { yield $variable; } be replaced with other failure 80 }s

3 write { yield $value; } detectors with different 81 }

4 |} guarantees 82

5 83 archetype(. ..) * resources
6 | mapping macro{ Persistent log se {

7 read { yield $variable; mapping macro. It 85 serverAppendEntriesLoop:

8 write { provides efficient 86 while (appendEntriesCh[srvId]) {

9 if ($value.cmd = LogConcat) { addanvdremove 87 await state[srvId] = Leader;

10 yield $variable \o $value.entries; operations 88 idx := 1,

11 } else if ($value.cmd = LogPop) { 89 appendEntriesLoop:

12 yield SubSeq($variable, 1, 9% while (

13 Len($variable)-$value.cnt); 91 /\ state[srvId] = Leader

14 }; 92 /\ idx <= NumServers

15 } 93) {

6 | ¥ 94 if (idx /= srvid) {

17 95 with (

18 mapping macro A channel for sending and 96 prevLogIndex = nextIndex[srvId][idx] - 1,
19 read { receiving messages between 97 prevLogTerm = IF prevLogIndex > O

20 await Len($variable) > 0; archetypes in the same server 98 THEN logl[srvId] [prevLogIndex].term
21 with (res = Head($variable)) { 99 ELSE 0,

22 $variable := Tail($variable); 100 entries = SubSeq(log[srvId],

23 yield res; 101 nextIndex[srvId] [idx],
24 }; 102 Len(logl[srvId]))
25 } 103) A{

26 write { 104 Send(net, idx, fd, [

27 yield Append($variable, $value); 105 mtype |-> AppendEntriesRequest,
28 106 mterm |-> currentTerm[srvId],
29 |} 107 mprevLogIndex |-> prevLogIndex,

30 108 mprevLogTerm |-> prevLogTerm,

31 macro Send(net, dest, fd, m) { A helper for handling failure 109 mentries |-> entries,

32 either { when sending a network 110 mcommitIndex |-> commitIndex[srvId],
33 net[dest] := m; message 111 msource |-> srvid,

34 } or { 112 mdest |-> idx

35 await fd[dest]; 113 s

3 ¥ 1 ¥ Leader server sending
37 ¥ 15 + new entries to follower
38 116 idx := idx + 1; servers

39 archetype(. ..) * resources 117 };

w0 o 118 };

41 serverHandlerLoop: 119 X

42 while (TRUE) { 120

43 m := net[srvId]; 121 archetype .) * resources

44 handleMsg: 122

45 if (m.mtype = RequestVoteRequest) { 123 clientLoop:

146 UpdateTerm(srvId, m, currentTerm, state, 124 while (TRUE) {

47 votedFor, leader); 125 req := reqCh;

48 with (126 sndReq:

19 i = srvIid, j = m.msource, 127 if (leader = Nil) {

50 logOK = \/ m.mlastLogTerm > LastTerm(log[il) 128 with (srv \in ServerSet) {

51 \/ /\ m.mlastLogTerm = LastTerm(loglil) 129 leader := srv;

52 /\ m.mlastLogIndex >= Len(log[il), 130 };

53 grant = /\ m.mterm = currentTerm[il] 131 };

54 /\ logOK 132 Send(net, leader, fd, [

55 /\ votedFor[srvId] \in {Nil, j} 133 mtype |-> ClientPutRequest,

56) { 134 memd |-> [

57 if (grant) { 135 type |-> Put,

58 votedFor[i] := j; 136 key |-> req.key,

59 }; 137 value |-> req.value

60 Send(net, j, fd, [138 1,

61 mtype | -> RequestVoteResponse, 139 msource |-> self,

62 mterm |-> currentTerm[i], 140 mdest |-> leader

63 mvoteGranted |-> grant, 141 1);

64 msource |-> 1, 142 rcvResp:

65 mdest |->j 143 either {

66 1); 144 resp := net[self];

67 }; 145 * handle response

68 } else if (m.mtype = RequestVoteResponse) { 146 respCh := resp;

69 * HandleRequestVoteResponse 147 }oor {

70 } else if (m.mtype = AppendEntriesRequest) { 148 await \/ /\ fd[leader]

71 * HandledppendEntriesRequest 149 /\ netLen[self] = 0| no unread message
72 } else if (m.mtype = AppendEntriesResponse) { 150 \/ [timeout; timeout injection
73 * HandledppendEntriesResponse 151 leader := Nil;

74 } else if (152 goto sndReq;

75 \/ m.mtype = ClientPutRequest 153 };

76 \/ m.mtype = ClientGetRequest 154 ¥

7) { 155}

* HandleClientRequest

171

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

B ARTIFACT APPENDIX
B.1 Abstract

Our artifact has two components. We provide the PGo compiler
itself, which can compile MPCal specifications, and we also provide
a method for reproducing our performance results from §7 (except
for Figure 6). The PGo compiler is available at https://github.com/
DistCompiler/pgo [34], and can be used to compile MPCal specifica-
tions. Tools for reproducing our performance results are available
at https://github.com/DistCompiler/pgo-artifact [31]. We describe
how to set up both of these.

B.2 Artifact Check-list (Meta-information)
B.2.1 The PGo Compiler.

Compilation: Scala 2.13, Go 1.18, and sbt 1.6.2 as build system.
Experiments: our unit tests can be run, and they should pass.
How much disk space required (approximately)?: 200MB.
How much time is needed to prepare workflow (approxi-
mately)?: 15 minutes.

Publicly available?: yes.

Code licenses (if publicly available)?: Apache-2.0

Workflow framework used?: no.

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7430244

B.2.2 Performance Results.

e Program: our fork of the YCSB benchmarking suite [16] with
additional backends, included.

e Binary: our included binaries in the image/ folder are Linux-
specific and tested on Ubuntu 20.04.

o Run-time environment: each of our benchmarking machines is
assumed to run Ubuntu 20.04.

e Hardware: up to 15 machines networked together. We originally
used Standard_B8ms VMs provisioned on Microsoft Azure with
default network routing, but any fleet of VMs or bare metal machines
with 8 CPUs with 32GB of RAM and a fully connected network
topology should be appropriate.

e Run-time state: experiments assume uncontended network and

CPU.

Metrics: latency, throughput.

Output: live output is console, which will be stored in the results/

folder. We provide a post-processor that can translate the folders

of console output generated by our experiments into CSV format
for processing via our Jupyter notebook. We provide the results
we feature in the paper in the results_paper/ folder. While each
individual benchmark execution will take 10 minutes or less, budget

multiple days to rederive all data points we include in our paper.
Experiments: we provide an automated runner for running our

experiments, and a Jupyter notebook containing our data processing
steps. We include a complete set of configuration files and automa-
tion scripts for our tools, and we provide instructions on how to
customize this configuration to account for different situations.

¢ How much disk space required (approximately)?: 1-2GB for
the main folder. Deployed VMs will consume extra disk space.

e How much time is needed to prepare workflow (approxi-
mately)?: 5 hours to set up Azure or Vagrant; budget multiple
days if attempting bare metal deployment

e How much time is needed to complete experiments (approx-
imately)?: budget multiple days to rederive all data points we
include in the paper. Some systems are flaky, which may require
monitoring and restarting the benchmarking process. Our runner
will start over at the last valid result if interrupted.

172

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

Publicly available?: yes.

Code licenses (if publicly available)?: Apache-2.0

Workflow framework used?: yes.

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7430228

B.3 How to Download and Run the PGo
Compiler
To just use the PGo compiler, we provide these instructions. For
more information, consult the project’s README . md. To reproduce
our experimental results, see the next section. First, clone the git
repository at branch asplos23, and enter the created folder:
$ git clone --branch asplos23
< https://github.com/DistCompiler/pgo
$ cd pgo
To build PGo, you will need to install the sbt build tool 1.6.2
(https://www.scala-sbt.org/), and Go 1.18 or later (https://go.dev/).
Once the dependencies are installed, you can build and run PGo
via the sbt command. All other dependencies will be downloaded
automatically by the build process. Build PGo and run its sanity
tests:
$ sbt test

The systems we have build in MPCal are available in systems/.
Enter any subfolder, and the Makefile will contain verfification
and compilation commands relevant to that system. For example,
run the model checker on one of the MPCal models:
$ make mc

Note that we provide pre-generated code from PGo for each
system for ease of use. To regenerate these files, re-run PGo on the
.t1la files. This applies both to generated Go and TLA* code.

For more information, consult the repository’s README . md.

B.4 Description

The following is exclusively about the tools necessary to reproduce
our evaluation, available at https://github.com/DistCompiler/pgo-
artifact. A version of this appendix is reproduced in the README . md
file, including additional detail where noted. Our benchmark runner
is a pre-compiled collection of JAR files runnable on Linux. Its
source code is provided in the azbench/ folder.

The benchmark runner machines, which will be controlled by
the benchmark runner, require that a large number of dependencies
be installed, as described in image/provision.sh. We document
this process further below.

B.4.1 How to Access. Clone the repository as shown below, recurs-
ing over submodules. Some but not all dependencies are included
as submodules.

$ git clone --recurse-submodules
< https://github.com/DistCompiler/pgo-artifact

B.4.2 Hardware Dependencies. Our original experiments were run
on Microsoft Azure VMs. We provide an automated workflow for
recreating our setup, as long as you have a locally logged-in Mi-
crosoft Azure account with $600 USD available.

Given that requiring Azure credits is not ideal, we also support
two other modes of operation: creating local VMs via Vagrant, or
provisioning machines by hand. Local VMs are not expected to
produce meaningful results.

https://github.com/DistCompiler/pgo
https://github.com/DistCompiler/pgo
https://github.com/DistCompiler/pgo-artifact
https://doi.org/10.5281/zenodo.7430244
https://doi.org/10.5281/zenodo.7430228
https://www.scala-sbt.org/
https://go.dev/
https://github.com/DistCompiler/pgo-artifact
https://github.com/DistCompiler/pgo-artifact

Compiling Distributed System Models with PGo

B.4.3 Software Dependencies. On the machine that will be used
to collect experimental results, our experiment runner’s software
dependencies are just a working installation of Java 11+. To run
our data processing, we additionally require Jupyter with ipykernel
6.13.0 or compatible, as well as pandas 1.3.5, matplotlib 3.5.1, and
numpy 1.21.5. For our Vagrant-based provisioning solution, Vagrant
2.2.16 or compatible is required to run the provided Vagrant files.
For our Azure-based provisioning solution, Azure CLI 2.41.0 or
compatible is required to log into the Azure account that you will
use with our provisioner.

All other dependencies must be installed on remote machines
that our benchmark runner controls. Our provisioning script
image/provision.sh should be considered authoritative for ver-
sions and build steps. The script expects an Ubuntu 20.04 envi-
ronment with the current directory set to a copy of the image/
directory at ~/image/. Note that the remote machine workloads
are incompatible with Java 16+ due to a deprecated feature used by
the Java YCSB implementation.

B.5 Installation

Our installation process has three variations, each of which has
a tradeoff in terms of faithfulness to our original setup, ease of
use, and financial investment. In all cases, the included bench-
mark runner . /azurebench will run all the experiments listed in
experiments. json and deposit the results in results/. Consult
the tool’s --help for information on tunable values. Note that --
settling-delay 20 is necessary to run the Ivy-Raft benchmark,
as that system takes some time to successfully elect a leader.

B.5.1 Manage Machines with Vagrant. This is the easiest solution
to setup, as it launches all the required servers as VMs on the local
machine with Vagrant. It is unlikely to produce useful results, but
it is an easy way to see that the experiments can be run at all.
Complete setup instructions for this configuration are provided
in the artifact’s README.md. Ensure the Vagrant VMs described
in vagrant_fleet/Vagrantfile are running with the custom
box we describe, and the correct static_server_map. json is
present.
Once this is done, the following command will run some simple
experiments on those VMs:
$./azurebench --settling-delay 20 .

B.5.2 Manage Machines with Azure. Given the funds, the most
accurate method to reproduce our results is to run experiments on
Microsoft Azure servers.

To do this, install Azure CLI 8, and log in using the account and
tenant to which you intend to charge experiments. Note down your
tenant ID and your subscription ID.

Once this is done, launching the provisioning and experiment
running process can be done with this command:

$./azurebench --settling-delay 20 --azure-subscription
< <subscription ID> --azure-tenant-id <tenant ID> .

See our artifact’s README . md for additional notes on managing
this process.

B.5.3 Manage Machines Manually. See our artifact’s README . md
file for information on how to do this.

8https://learn.microsoft.com/en-us/cli/azure/install-azure-cli

173

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

B.6 Experiment Workflow

Each experiment run by ./azurebench will be recorded in a sub-
folder of results/. This includes logs containing the outputs from
all the SSH sessions used. If a run was successful, results.txt
will exist and contain the results as human-readable text. If a run
was unsuccessful or interrupted, results.txt will not exist and
the other files will indicate what happened.

Which experiments occur is controlled by the experiments.
json file, which lists configuration values and shell commands to
execute when running experiments. The serverCount key indi-
cates how many servers each experiment requires, excluding one
additional client machine. All script dependencies for experiments
exist in the image/ folder, so a script invoked by the name foo can
be inspected by reading image/foo.

On checkout, the initial contents of experiments. json is a
copy of experiments_simple. json. This is a small workload
designed to ensure all kinds of experiment can be performed. The
true set of experiments from the paper, including our machine-
dependent tuning values, is in experiments_full. json. Copying
that over to experiments. json will cause all experiments from
the paper to be run in full.

Note that for results describing peak throughput (Figures 3 and
5), our configuration lists the values at which we measured peak
throughput on our machines. Results are known to vary even across
different Azure VMs of the same type. To recreate meaningful
results, we recommend splitting the experiments into two passes:
varying only the number of client threads, then varying workload
and cluster size. This initial set of experiments is in experiments_
tuning. json. The number of client threads that causes the highest
throughput should then be edited into key threadCount of the
template experiments_tuned. json, which will gather data that
depends on peak throughput.

B.7 Evaluation and Expected Results

To run our full set of experiments, run the following commands:

$ cp experiments_full.json experiments.json
$./azurebench --settling-delay 20 . # specify Azure IDs if
needed

Once complete, graphs-python.ipynb can be used to parse
data from results/ and recreate each of the performance graphs
from this paper. Which cell corresponds to which figure is annotated
in the comments.

Our existing data set is included under the name results_
paper/. To test that the notebook is set up properly, you can copy
that data over to results/ and see the same graphs from the paper
regenerated.

We expect a recreation of our results to preserve the relation-
ships between artifact performance numbers, but not the numbers
themselves.

B.8 Methodology

Submission, reviewing and badging methodology:
® https://www.acm.org/publications/policies/artifact-review-badging
o http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

REFERENCES

(1]

(2]
(3]

[4

=

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22]
[23]

[24]

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy Steele, and Sam Tobin-Hochstadt. 2007. The Fortress Lan-
guage Specification.

Bowen Alpern and Fred B. Schneider. 1987. Recognizing safety and liveness.
Distributed Computing 2, 3 (01 Sep 1987), 117-126.

Phil Bagwell. 2001. Ideal hash trees. Technical Report. Ecole Polytechnique
Federale de Lausanne.

Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. 1992. Orca: A
Language for Parallel Programming of Distributed Systems. IEEE Trans. Softw.
Eng. 18, 3 (March 1992), 190-205.

Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun, and Michael D.
Ernst. 2020. Visualizing Distributed System Executions. ACM Trans. Softw. Eng.
Methodol. 29, 2, Article 9 (Mar 2020), 38 pages.

Annette Bieniusa, Marek Zawirski, Nuno Preguica, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. 2012. An optimized conflict-free replicated
set. arXiv preprint arXiv:1210.3368 (2012).

James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal Methods
to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP).

Peter Bourgon. 2014. Roshi: A CRDT system for timestamped
events. https://developers.soundcloud.com/blog/roshi-a-crdt-system-
for-timestamped-events.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.
D. Callahan, B.L. Chamberlain, and H.P. Zima. 2004. The cascade high productiv-
ity language. In Ninth International Workshop on High-Level Parallel Programming
Models and Supportive Environments. 52-60.

Tej Chajed, Joseph Tassarotti, Frans M. Kaashoek, and Nickolai Zeldovich. 2020.
Verifying concurrent Go code in Coq with Goose. In Proceedings of the Interna-
tional Workshop on Coq for Programming Languages (CoqPL).

Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans Kaashoek, and Nickolai
Zeldovich. 2022. Verifying the DaisyNFS concurrent and crash-safe file system
with sequential reasoning. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors for
Reliable Distributed Systems. J. ACM 43, 2 (Mar 1996), 225-267.

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. 2010.
International Joint Conference on Automated Reasoning (IJCAR). Lecture Notes
in Computer Science (2010), 142-148.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet,
Jose Meseguer, and Jose Quesada. 2002. Maude: specification and programming
in rewriting logic. Theoretical Computer Science 285, 2 (2002), 187-243.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the ACM Symposium on Cloud computing (SoCC).

Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal, and Paul
Thomson. 2015. Asynchronous Programming, Analysis and Testing with State
Machines. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI).

Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer. 2021.
Building Reliable Cloud Services Using Coyote Actors. In Proceedings of the ACM
Symposium on Cloud computing (SoCC).

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. 2013. P: Safe Asynchronous Event-Driven Programming. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

Alastair F Donaldson, Emina Torlak, Jacob R Lorch, Yixuan Chen, Manos Kaprit-
sos, Bryan Parno, Shaz Qadeer, Upamanyu Sharma, James R Wilcox, and Xueyuan
Zhao. 2020. Armada: low-effort verification of high-performance concurrent pro-
grams. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A
Partially Synchronous Language for Fault-Tolerant Distributed Algorithms. In
Proceedings of the ACM on Programming Languages (POPL).

eted. 2021. eted. https://eted.io/.

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An
Empirical Study on the Correctness of Formally Verified Distributed Systems. In
Proceedings of the European Conference on Computer Systems (EuroSys).

Jeffrey S Foster, Dan Grossman, Marcelo Taube, Giuliano Losa, Kenneth L McMil-
lan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R Wilcox, and Doug Woos.
2018. Modularity for decidability of deductive verification with applications to dis-
tributed systems. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

174

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh

[25] Roxana Geambasu, Andrew Birrell, and John MacCormick. 2008. Experiences
with formal specification of fault-tolerant file systems. In International Conference
on Dependable Systems and Networks (DSN).

GitHub. 2018. October 21 post-incident analysis. https://github.blog/2018-10-

30-oct21-post-incident-analysis.

GitLab. 2017. Postmortem of database outage of January 31. https://about.gitlab.

com/2017/02/10/postmortem-of-database- outage-of-january-31/.

Google. 2022. global: Elevated HTTP 500s errors for a small number of cus-

tomers with load balancers on Traffic Director-managed backends. https:

//status.cloud.google.com/incidents/LuGcJVjNTeC5Sb9pS]9o.

Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring and Assert-

ing Distributed System Invariants. In Proceedings of the International Conference

on Software Engineering (ICSE).

Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang.

2011. Practical Software Model Checking via Dynamic Interface Reduction. In

Proceedings of the ACM Symposium on Operating Systems Principles (SOSP).

[31] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. 2022. Compiling Distributed System Models with PGo [evaluation].
https://doi.org/10.5281/zenodo.7430228

[32] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. 2022. PGo. https://distcompiler.github.io/.

[33] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. 2022. PGo. https://github.com/DistCompiler/pgo.

[34] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. 2022. PGo. https://doi.org/10.5281/zenodo.7430244

[35] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-

nikh. 2022. PGo Benchmarks. https://github.com/DistCompiler/pgo-artifact.

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021. Finding

Invariants of Distributed Systems: It’s a Small (Enough) World After All. In

Proceedings of the USENIX Conference on Networked Systems Design and Imple-

mentation (NSDI).

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. 2017. IronFleet: Proving Safety

and Liveness of Practical Distributed Systems. Commun. ACM 60, 7 (2017), 83-92.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. 2022. IronClad Commit at which

IronKV Implementation was evaluated. https://github.com/microsoft/Ironclad/

tree/bcb296737df6541c9542ad4e35499b347992£238.

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Adore: Atomic

Distributed Objects with Certified Reconfiguration. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI).

Ben Johnson. [n.d.]. Benbjohnson/immutable: Immutable collections for go.

https://github.com/benbjohnson/immutable.

Jonathan Kaldor, Jonathan Mace, MichalBejda, Edison Gao, Wiktor Kuropatwa,

Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod

Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An

End-to-End Performance Tracing And Analysis System. In Proceedings of the

ACM Symposium on Operating Systems Principles (SOSP).

Charles Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and Amin Vahdat.

2007. Mace: Language Support for Building Distributed Systems. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI).

Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat. 2007. Life,

Death, and the Critical Transition: Finding Liveness Bugs in Systems Code. In

Proceedings of the USENIX Conference on Networked Systems Design and Imple-

mentation (NSDI).

Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE

Trans. Softw. Eng. 3, 2 (Mar 1977), 125-143.

Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Trans. Program. Lang.

Syst. 16, 3 (May 1994), 872-923.

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hard-

ware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Leslie Lamport. 2009. The PlusCal Algorithm Language. Theoretical Aspects of

Computing-ICTAC 2009, Martin Leucker and Carroll Morgan editors. Lecture Notes

in Computer Science, number 5684, 36-60. (Jan 2009). https://www.microsoft.com/

en-us/research/publication/pluscal-algorithm-language/

[48] K. H. Lee, N. Sumner, X. Zhang, and P. Eugster. 2011. Unified debugging of dis-
tributed systems with Recon. In International Conference on Dependable Systems
and Networks (DSN).

[49] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman,

and Haryadi S. Gunawi. 2014. SAMC: Semantic-aware Model Checking for Fast

Discovery of Deep Bugs in Cloud Systems. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI).

Rustan Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correct-

ness. In Logic for Programming, Artificial Intelligence, and Reasoning, Edmund M.

Clarke and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-

berg, 348-370.

[26

[27

[28

[29

[30

[36

[37

[38

[39

=
=

[41

[42

[43

[44

[45

[46

[47

[50

https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://etcd.io/
https://github.blog/2018-10-30-oct21-post-incident-analysis
https://github.blog/2018-10-30-oct21-post-incident-analysis
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://status.cloud.google.com/incidents/LuGcJVjNTeC5Sb9pSJ9o
https://status.cloud.google.com/incidents/LuGcJVjNTeC5Sb9pSJ9o
https://doi.org/10.5281/zenodo.7430228
https://distcompiler.github.io/
https://github.com/DistCompiler/pgo
https://doi.org/10.5281/zenodo.7430244
https://github.com/DistCompiler/pgo-artifact
https://github.com/microsoft/Ironclad/tree/bcb296737df6541c9542ad4e35499b347992f238
https://github.com/microsoft/Ironclad/tree/bcb296737df6541c9542ad4e35499b347992f238
https://github.com/benbjohnson/immutable
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/

Compiling Distributed System Models with PGo

[51] Mohsen Lesani, Christian J Bell, and Adam Chlipala. 2016. Chapar: certified
causally consistent distributed key-value stores. ACM SIGPLAN Notices 51, 1
(2016), 357-370.

[52] Si Liu, Atul Sandur, José Meseguer, Peter Csaba Olveczky, and Qi Wang. 2020.
Generating Correct-by-Construction Distributed Implementations from Formal
Maude Designs. In NASA Formal Methods (NFM). Springer International, 22-40.

[53] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,
Ming Wu, M. Frans Kaashoek, and Zheng Zhang. 2008. D3S: Debugging Deployed
Distributed Systems. In Proceedings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI).

[54] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. 2007. WiDS Checker:
Combating Bugs in Distributed Systems. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[55] Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu. 2022. Who Goes
First? Detecting Go Concurrency Bugs via Message Reordering. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[56] Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. 2021. Auto-
matically Detecting and Fixing Concurrency Bugs in Go Software Systems. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[57] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. WiscKey: Sepa-
rating Keys from Values in SSD-Conscious Storage. ACM Transactions on Storage
(TOS) 13,1 (2017), 1-28.

[58] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Daniar H. Kurni-
awan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye, Tanakorn Leesata-
pornwongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi. 2019. FlyMC: Highly
Scalable Testing of Complex Interleavings in Distributed Systems. In Proceedings
of the European Conference on Computer Systems (EuroSys).

[59] Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-Baptiste Jean-
nin, Manos Kapritsos, and Baris Kasikeci. 2022. Sift: Using Refinement-guided
Automation to Verify Complex Distributed Systems. In USENIX Annual Technical
Conference (ATC).

[60] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci,
and Karem A. Sakallah. 2019. I4: Incremental Inference of Inductive Invariants
for Verification of Distributed Protocols. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP).

[61] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2018. Pivot Tracing: Dynamic

Causal Monitoring for Distributed Systems. ACM Trans. Comput. Syst. 35, 4,

Article 11 (Dec. 2018), 28 pages.

Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Ver-

ification Infrastructure for Permission-Based Reasoning. In Verification, Model

Checking, and Abstract Interpretation (VMCAI) (LNCS, Vol. 9583), B. Jobstmann

and K. R. M. Leino (Eds.). Springer-Verlag, 41-62.

[63] Jonathan Nadal. [n.d.]. Building Distributed Systems With Stateright. https:
//www.stateright.rs/. Accessed: 2022-10-27.

[64] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak,
and Xi Wang. 2019. Scaling symbolic evaluation for automated verification of
systems code with Serval. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP).

[65] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. 2015. How Amazon Web Services Uses Formal Methods.
Commun. ACM 58, 4 (Mar 2015), 66-73.

[66] Diego Ongaro. 2014. Consensus: Bridging theory and practice. Stanford University.

[67] Diego Ongaro. 2021. Raft TLA+ specification. https://github.com/ongardie/raft.
tla.

[62

Received 2022-07-07; accepted 2022-09-22

175

(68

[69

[75

[76

[77
[78

[79

[80

[81

(82

[83

[84

(85

(86

]

]

]

]

]

]

]

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In USENIX Annual Technical Conference (ATC).

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. 2016. Ivy: Safety Verification by Interactive Generalization. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the Annual
Symposium on Foundations of Computer Science.

Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. 2015.
Formal Specification, Verification, and Implementation of Fault-Tolerant Systems
using EventML. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 72 (2015).
Manish Rai Jain. 2017. Introducing Badger: A fast key-value store written purely
in go. https://dgraph.io/blog/post/badger/.

Redis. 2022. Redis. https://redis.io/.

Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. 2006. Pip: Detecting the Unexpected in Distributed
Systems. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and
proving with distributed protocols.

Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: Systematic Evaluation of
Distributed Systems. In Proceedings of the 5th International Conference on Systems
Software Verification (SSV).

Tom Strickx and Jeremy Hartman. 2022. Cloudflare outage on June 21, 2022.
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/.

The Coq Development Team. 2019. The Coq Proof Assistant, Version 8.9.0. https:
//web.archive.org/web/20190415015254/https://zenodo.org/record/2554024.
James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. 2015. Verdi: a framework for imple-
menting and formally verifying distributed systems. ACM SIGPLAN Notices 50, 6
(Jun 2015), 357-368.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. 2022. verdi-raft commit at which
Vard implementation was evaluated. https://github.com/uwplse/verdi-raft/tree/
ea99a7453¢30a0c11b904b36a3b4862fad28abel.

Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, Jodo C. Pereira,
and Peter Miiller. 2021. Gobra: Modular Specification and Verification of Go
Programs. In International Conference on Computer Aided Verification (CAV).
Maysam Yabandeh, Nikola KneZzevi¢, Dejan Kosti¢, and Viktor Kuncak. 2010. Pre-
dicting and Preventing Inconsistencies in Deployed Distributed Systems. ACM
Trans. Comput. Syst. 28, 1, Article 2 (Aug. 2010), 49 pages.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST: Transpar-
ent Model Checking of Unmodified Distributed Systems. In Proceedings of the
USENIX Conference on Networked Systems Design and Implementation (NSDI).
Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022. DuoATI: Fast, Auto-
mated Inference of Inductive Invariants for Verifying Distributed Protocols. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
2021. DistAl: Data-Driven Automated Invariant Learning for Distributed Pro-
tocols. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues, Shan Lu,
and Ding Yuan. 2021. Understanding and Detecting Software Upgrade Failures in
Distributed Systems. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP).

https://www.stateright.rs/
https://www.stateright.rs/
https://github.com/ongardie/raft.tla
https://github.com/ongardie/raft.tla
https://dgraph.io/blog/post/badger/
https://redis.io/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://web.archive.org/web/20190415015254/https://zenodo.org/record/2554024
https://web.archive.org/web/20190415015254/https://zenodo.org/record/2554024
https://github.com/uwplse/verdi-raft/tree/ea99a7453c30a0c11b904b36a3b4862fad28abe1
https://github.com/uwplse/verdi-raft/tree/ea99a7453c30a0c11b904b36a3b4862fad28abe1

	Abstract
	1 Introduction
	2 Assumptions and Background
	2.1 Trusted Computing Base Assumptions
	2.2 Background

	3 Modular PlusCal
	3.1 The Archetype Process Abstraction
	3.2 Mapping macros
	3.3 Instantiating an Archetype Process
	3.4 Compiling MPCal with PGo

	4 Generating Go code from MPCal
	4.1 MPCal Statements and TLA+ Values
	4.2 MPCal Concurrency Semantics
	4.3 Using Verified Code from MPCal
	4.4 Fault Tolerance

	5 Generating PlusCal from MPCal
	6 Implementation
	7 Evaluation
	7.1 Evaluated Systems and Methodology
	7.2 Development Effort
	7.3 Model Checking Performance
	7.4 Performance of Raft-based KV Stores
	7.5 Performance of Primary-Backup KV stores
	7.6 Performance of CRDT-based Systems

	8 Related Work
	9 Conclusion
	Acknowledgments
	A PGo-RaftKV Specification Appendix
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact Check-list (Meta-information)
	B.3 How to Download and Run the PGo Compiler
	B.4 Description
	B.5 Installation
	B.6 Experiment Workflow
	B.7 Evaluation and Expected Results
	B.8 Methodology

	References

